
BILEVEL FEATURE SELECTION IN NEARLY-LINEAR TIME

Chinmay Hegde

Electrical and Computer Engineering, Iowa State University

ABSTRACT

Selection of a small subset of informative features from data is a ba-
sic technique in signal processing, machine learning, and statistics.
Joint selection of entire groups of features is desirable if the data
features exhibit shared grouping structures. Bilevel feature selection
constitutes a refinement of these ideas, producing a small subset of
data features that themselves belong to a small number of feature
groups. However, algorithms for bilevel feature selection suffer a
computational cost that can be cubic in the size of the data, hence im-
peding their utility. In this paper, we propose an approach for bilevel
feature selection that resolves this computational challenge. The
core component of our approach is a novel fast algorithm for bilevel
hard thresholding for a specific non-convex, discrete optimization
problem. Our algorithm produces an approximate solution to this
problem, but only incurs a nearly-linear running time. We extend
this algorithm into a two-stage thresholding method that performs
statistically as well as the best available methods for bilevel feature
selection, but that also scales extremely well to massive dataset sizes.

1. INTRODUCTION

1.1. Motivation

Selection of a small subset of informative features from data is an
important primitive in algorithms spanning several research areas.
In signal processing, this technique forms the core of algorithms for
sparse recovery, where the goal is to reconstruct a sparse signal from
(possibly noisy) linear measurements. In statistics, this technique
identifies a subset of relevant features to enhance prediction perfor-
mance in multivariate linear regression and factor analysis.

However, data features often exhibit shared grouping structures,
and informative features may co-occur as subsets of groups. For
example, the nonzero coefficients of a sparse time-domain signal
may occur as a single contiguous group. Here, it may be benefi-
cial to jointly select entire (mutually exclusive) groups of correlated
features. This approach is closely related to the multitask learning
problem in machine learning applications.

Bilevel feature selection combines the best aspects of the above
well-known techniques. The goal of bilevel feature selection is to
identify a small subset of data features that themselves belong to a
small number of feature groups. Similar to the sparse feature learn-
ing case, the bilevel approach encourages a parsimonious selection
of data features; however, unlike the sparse case, it explicitly en-
courages intra-group feature selection. Due to its flexibility, bilevel
feature selection has proved to be beneficial in applications spanning
bioinformatics, web data mining, and medical imaging; see [1–8].

However, the benefits of bilevel feature selection are obtained
at formidable computational costs. Algorithms for bilevel selec-

This work was supported in part by the National Science Foundation
under grant CCF-1566281.

tion typically adopt one of two approaches. The first approach in-
volves posing the feature selection as an optimization problem with
a hybrid penalty that encourages sparsity as well as group-sparsity
in the features. Representative examples in this class include the
Sparse Group Lasso (SGL) [1], the SOGLasso [7], the group MCP
approach [2], the group bridge approach [3], and the group exponen-
tial Lasso [9]. The second approach involves solving a combinatorial
optimization problem using techniques from discrete programming.
The Sparse Group Hard Thresholding (SGHT) approach of [6] is an
example. The combinatorial approach is known to provide better
statistical performance, as well as tighter (and intuitive) control over
the sparsity as well as the number of groups in the selection. Unfor-
tunately, the algorithmic cost of this optimization can be severe.

Concretely, consider a p-dimensional data vector x where the
features are grouped into n (disjoint) groups of size g each (so
that p = ng), and set parameters s1 (desired sparsity) and s2 (de-
sired group sparsity). Then, SGHT returns an estimate x̂ such that
‖x− x̂‖2 is smallest among all vectors x̂ that are s1-sparse and
s2-group sparse. However, the algorithm involves a challenging
dynamic program (DP) that expends O(ps1s2) running time as well
as O(ns1s2) memory. For massive data analysis problems where
p, n, g are high and s1, s2 scale polynomially with p, the time and
memory cost can be as high as cubic in the dataset size p. Therefore,
this approach is not efficient for high dimensional problems.

1.2. Our contributions

In this paper, we develop a new approach for bilevel feature selection
that resolves these computational challenges. Our approach is based
on two algorithmic components:

1. As our primary contribution, we develop and analyze a new
approximation algorithm for bilevel thresholding, that we call
KEEPHEAVY, that runs in nearly-linear time. Concretely, for
feature vectors of length p, our algorithm runs in timeO(p log p)
(independent of the sparsity and group sparsity parameters), and
provably produces a solution with an objective value a (small)
constant-factor of the optimum. Moreover, our algorithm re-
quires only O(p) memory and is simple to implement.

2. As our secondary contribution, we integrate this approximation
method into an iterative two-stage hard thresholding algorithm
for bilevel sparse linear regression. Executing this algorithm for a
small number of iterations enables us to solve the overall problem
of bilevel feature selection.

Table 1 summarizes the performance of our contributions rel-
ative to two representative previous approaches (SGL and SGHT).
Numerical simulations reveal that our method achieves an identi-
cal statistical performance as the best available methods, but with
at least an order of magnitude improvement in running time. For
example, on a signal of size p = 1, 000, 000 with parameters n =
g = 1000, we obtain at least a 30× speedup with negligible loss in
statistical efficiency. See Section 5 for details.

Table 1. Comparison of different algorithms for bilevel selection.
Data size is denoted by p, sparsity level by s1, and group-sparsity
level as s2. Õ(·) indicates scaling modulo polylogarithmic factors.

Approach Method Reference Runtime

SGL Convex optimization [1] poly(p)

FISTA-SGHT Dynamic program [6] Õ(ps1s2)
Alg. 3 Approximation This paper Õ(p)

1.3. Our techniques

Our two-stage hard thresholding algorithm is not particularly new;
variations of this approach in the sparse recovery literature include
CoSaMP [10], Subspace Pursuit [11], and iterative hard threshold-
ing [12]. Our proposed algorithm can be viewed as an extension of
Subspace Pursuit to the case of bilevel selection. This follows the
approach of [13], which extended CoSaMP to the case of structured
sparsity models; see, also, the recent works [14–17].

The key innovation is our new algorithm for bilevel thresh-
olding. Instead of directly solving the discrete optimization posed
in SGHT, we first perform a Lagrangian relaxation of the sparsity
constraint to obtain a different (also combinatorial) problem. Some-
what surprisingly, we show the relaxed problem can be solved in
linear O(p) time and only O(p) extra space. We solve a carefully
constructed sequence of such Lagrangian relaxations (log(p) in
number). Combined with a particular termination step, we obtain
a final estimate x̂ which satisfies a constant approximation-factor
guarantee1. Therefore, the overall thresholding algorithm runs in
O(p log p). This constitutes a polynomial improvement over the ex-
isting FISTA-SGHT approach in the regime when s1, s2 are Θ(p).

Due to space constraints, we merely include our algorithms, the-
orems, and representative experiments; please see [18] for details.

2. BACKGROUND

We will concern ourselves with feature vectors x ∈ Rp. For a given
set of indices S, xS ∈ Rp denotes the vector x restricted to the
indices in S. Throughout the paper, we assume that the coordinates
of any given vector x ∈ Rp can be partitioned into n disjoint (non-
overlapping) groups,G1, G2, . . . , Gn, of equal cardinality g, so that
p = ng. Formally, Gi ⊆ [p] denotes the indices belonging to group
i for i = 1, . . . , n; |Gi| = g; and Gi ∩ Gj = ∅.

The symbol ‖·‖2 denotes the `2-norm. The symbol I(·) denotes
the indicator function that equals 1 if its argument is true, and 0
otherwise. The support of x, denoted by supp(x) ⊆ [p] is the set
of indices corresponding to the nonzero coefficients of x. We call
x as being s1-sparse if at most s1 of its p coefficients are nonzero,
i.e.,

∑p
i=1 I(|xi| > 0) ≤ s1. We call x as being s2-group-sparse

if at most s2 of its n feature groups contain at least one nonzero
coefficient, i.e.,

∑n
j=1 I(

∥∥xGj

∥∥
2
> 0) ≤ s2.

Following [6], we define the (s1, s2)-thresholding problem as
follows. Given an input vector x ∈ Rp, the goal is to find:

x̂ = arg min
v

‖x− v‖22 (1)

s. t.
p∑
i=1

I(|vi| > 0) ≤ s1,

n∑
j=1

I(
∥∥vGj

∥∥
2
> 0) ≤ s2.

1Due to the relaxation of the sparsity parameter, our estimate x̂ contains
αs1 nonzeros, where α is a small number bigger than 1.

The (s1, s2)-thresholding problem is a challenging combinatorial
optimization problem owing to the presence of the indicator con-
straints. Interestingly, the challenge is due to the simultaneous pres-
ence of sparsity and grouping constraints; removing either one of the
constraints results in a far easier problem that can be solved via stan-
dard thresholding. To the best of our knowledge, the only (exact)
algorithm for solving (1) is the SGHT approach of [6].

Our focus in this paper will be to use bilevel feature selection to
solve more general linear regression problems. In particular, given a
linear operator A ∈ Rm×p and a response vector y ∈ Rm, the goal
now is to find an x ∈ Rp that is s1-sparse and s2-group-sparse that
minimizes the regression error in the least-squares sense:

x̂ = arg min
x

‖y −Ax‖22 , (2)

s. t.
p∑
i=1

I(|xi| > 0) ≤ s1,

n∑
j=1

I(
∥∥xGj

∥∥
2
> 0) ≤ s2.

In the high-dimensional regime, the length of the response m is
much smaller than the data size p. Enforcing both constraints is
known to considerably improve regression performance in such
regimes. Algorithms for solving problems of the form (2) have been
long studied in the literature. One approach is to replace the non-
convex combinatorial constraints in (2) by suitable convex surrogate
penalties. The Sparse Group Lasso [1] is one of the earliest such
convex formulations. Subsequently, researchers have developed new
surrogate penalties (many of them nonconvex) with associated esti-
mation algorithms. Instances of these newer approaches including
the group MCP [2, 4] and the group bridge [3].

An alternative approach is to use the SGHT algorithm of [6]
with FISTA iterations. This approach directly attempts to solve the
nonconvex problem using a projected gradient descent-like method.
The number of iterations required for the algorithm to converge de-
pends on several parameters such as the initialization, choice of step-
size, and acceleration. Nevertheless, each iteration involves a bilevel
thresholding problem of the form (1), and the cost per iteration can
be as high as cubic in the size of the data. Interestingly, the SGHT
algorithm provides the best statistical performance, as well as com-
parable running time, when contrasted against the best penalty-based
approaches.

3. APPROXIMATE BILEVEL PROJECTION

In this section, we propose a fast, simple, and approximate algo-
rithm for solving the (s1, s2)-projection problem. Observe that the
optimization problem (1) is a hard thresholding problem; the goal is
to discover a signal x̂with support Ω, containing at most s1 elements
grouped into at most s2 groups, such that x̂Ω = xΩ and x̂Ωc = 0.

We introduce some more notation to simplify the discussion. Let
card(·) denote the cardinality of a set. Let G(·) denote the number
of “active” groups for any given support Ω:

G(Ω) =

n∑
j=1

I(Ω ∩Gj 6= ∅).

If OPT is the value of the objective function at the optimum, then
we can write (1) as:

OPT = min
Ω⊆[p]

‖x− xΩ‖22 (3)

s. t. card(Ω) ≤ s1, G(Ω) ≤ s2.

Algorithm 1 Solving the Lagrangian relaxation
1: function KEEPHEAVY(x, s, λ)
2: for i ∈ [p] do
3: bi ← x2

i − λ
4: for j ∈ [n] do
5: cj ←

∑
i∈Gj

max(0, bi)

6: S ← Top-s indices of cj
7: Ω =

⋃
j∈S supp(max(0, bGj))

8: return Ω

Algorithm 2 Approximate bilevel projection
1: function BILEVELAPPROX(x, s1, s2, γ, ε)
2: λl ← ‖x‖2∞, λr ← 0
3: while λl − λr > ε/s1 do
4: λm ← λl+λr

2

5: Ω̂← KEEPHEAVY(x, s2, λm)

6: if card(Ω̂) ≥ s1 and card(Ω̂) ≤ (1 + γ)s1 then
7: return Ω̂
8: else if card(Ω̂) < s1 then
9: λl ← λm

10: else
11: λr ← λm
12: return Ω̂← KEEPHEAVY(x, s2, λl)

Instead of solving this problem using the dynamic program (DP)
prescribed in [6], we will adopt an alternate approach. We first per-
form a Lagrangian relaxation of the s1-sparsity constraint on Ω,
while retaining the S2 group sparsity constraint. That is, for a fixed
parameter λ > 0, consider the modified problem:

OPT rel = min
Ω⊆[p]

‖x− xΩ‖22 + λ card(Ω), (4)

s.t. G(Ω) ≤ s2.

The choice of parameter λ controls the trade-off between the quality
of approximation, versus the sparsity, of the estimated signal xΩ.

First, we develop an algorithm to solve (4), explained in pseu-
docode form as Alg. 1 (KEEPHEAVY). We also obtain the following
theorem regarding the correctness and runtime of KEEPHEAVY.
Theorem 1. Let x ∈ Rp. Then, for any fixed s and λ, KEEPHEAVY

runs in O(p) time and returns a support Ω̂, satisfying G(Ω̂) ≤ s,
such that

OPT rel =
∥∥x− xΩ̂

∥∥2

2
+ λ card(Ω̂).

Therefore, using KEEPHEAVY, we can solve (4) in linear time.
Since the Lagrangian relaxation gives us only indirect control over
the sparsity of the solution via the parameter λ, we need to choose
λ carefully. In order to achieve this, we adopt a binary search pro-
cedure. If the sparsity of the output support Ω̂ is too high relative to
s1, we increase λ, while if it is too low, we decrease λ. Algorithm
2 describes this procedure in pseudocode.2 In addition to x, s1 and
s2, and p, the algorithm requires two additional parameters γ and ε;
γ denotes the aforementioned blow-up factor in the sparsity, while ε
is a precision parameter dictating the number of iterations required
for the binary search.

In fact, we can show that not only does such a binary search
produces a support Ω̂ of acceptable sparsity, but it also ensures that
the error of approximation is close to the optimum of the original
(constrained) problem (1). We prove the following:

2A very similar technique based on binary search has appeared before
in [15], but for a rather different discrete optimization problem.

Algorithm 3 Two-stage Bilevel Hard Thresholding
1: function TSBHT(y,A, s1, s2, γ, ε, T)
2: x0 ← 0
3: for t← 1, . . . , T do
4: v ← AT (y −Axt−1)
5: Γ← supp(x̂t−1)
6: Γ← Γ ∪ BILEVELAPPROX(v, 2s1, 2s2, γ, ε)

7: wΓ ← A†Γy, wΓC ← 0
8: Ω← BILEVELAPPROX(w, s1, s2, γ, ε)

9: zΩ ← A†Ωy, zΩC ← 0
10: x̂t ← z

11: return x̂← xT

Theorem 2. Let x ∈ Rp be an input vector, and s1, s2 be integer-
valued parameters. Let γ, ε > 0 be real-valued parameters. Then,
BILEVELAPPROX returns a support Ω̂ such that card(Ω̂) ≤ (1 +

γ)s1 and G(Ω̂) ≤ s2 . Moreover, Ω̂ satisfies:

∥∥x− xΩ̂

∥∥2

2
<

(
1 +

1

γ

)
OPT + ε .

The algorithm runs in time O(p log
‖x‖∞s1

ε
). Assuming that x

is provided with O(log p) bits of precision, this simplifies to
O(p log p).

Theorem 2 implies that Algorithm 2 is bi-criteria approximate.
It provides an answer which is within a small constant factor of the
optimum and also incurs a small blowup in the sparsity of the re-
turned solution. In our experiments, we have observed that these
bounds are somewhat loose, and in practice we get better approxi-
mation ratios. The upshot, of course, is that the overall algorithm
runs in (nearly) linear time and requires only O(p) extra space.

4. BILEVEL FEATURE SELECTION

Armed with our fast (approximate) algorithm for bilevel hard thresh-
olding, we are now ready to solve general feature selection problems
of the form (2). The standard approach is to integrate the approxi-
mate bilevel projection step into a gradient descent-type algorithm,
similar to the approach of [6]. Here, we propose an alternate ap-
proach that we call Two-stage bilevel hard thresholding.

Two-stage thresholding approaches have been developed in sev-
eral different contexts [10–12]. A prototypical two-stage threshold-
ing algorithm is Subspace Pursuit [11], developed for solving sparse
linear regression problems. Our algorithm can be viewed as an ex-
tension of Subspace Pursuit to the case. Similar extensions of a
(slightly) different two-stage thresholding method have been known
to provide very good numerical performance [13, 15, 17, 19].

We describe the algorithm in pseudocode form as Alg. 3. The
algorithm takes in as input a response vector y ∈ Rm and a design
matrix A ∈ Rm×p. It also requires sparsity and group-sparsity pa-
rameters s1, s2. The algorithm returns an estimate x̂ that has at most
(1 + γ)s1 nonzeros within s2 groups. In both theory and practice,
Alg. 3 exhibits linear convergence, and therefore the overall running
time is proportional (up to logarithmic factors) to the cost of matrix-
vector multiplication using the matrix A. For special matrices that
support fast multiplication (e.g., subsampled Fourier matrices), this
cost is nearly-linear in p. We defer a rigorous analysis of Alg. 3 to
the full version of this paper [18].

(a) SP [11] (b) Block SP

(c) FISTA-SGHT [6] (d) Alg. 3

Fig. 1. Example support recovery results of a signal of size p =
128× 128 using m = 1140 measurements.

Algorithm SP [11] Block SP SGHT [6] Alg. 3
MSE (dB) 2.1 9.6 51.64 52.49

Runtime (sec) 0.0035 0.0008 5.0101 0.0510

Table 2. Quantitative comparisons of algorithms for data in Fig. 1.

5. NUMERICAL RESULTS

In this section, we demonstrate the efficacy of our algorithms via a
series of numerical experiments. All experiments were conducted
on an iMac desktop computer equipped with a 3.5GHz Intel Core
i5 processor and 16GB RAM. In each of our experiments below,
we set the relaxation parameter γ to 1.1, the iteration parameter T
to 40, and the binary search parameter ε to the machine precision
in MATLAB (2.2 × 10−16). For demonstration purposes, we also
include the performance of previously proposed algorithms for fea-
ture selection. Due to space (and time) constraints, we limit our
comparisons to only a few representative methods, and defer a more
thorough set of numerical comparisons as future work. Among these
representative algorithms are: (a) Subspace Pursuit (SP) [11], an al-
gorithm for sparse recovery that ignores the s2-grouping constraint.
(b) A block version of Subspace Pursuit, that performs group-sparse
recovery but ignores the s1-sparsity constraints. (c) FISTA-SGHT,
the dynamic programming-based method of [6] that enforces both
constraints.

We first demonstrate the statistical efficiency of our proposed
algorithms. We generate a synthetic test feature vector x ∈ Rp of
length p = 16, 384, comprising n = 128 groups of size g = 128
each. The signal x contains s1 = 300 nonzeros where all the nonze-
ros belong to s2 = 10 groups. The nonzero coefficients of x are
independently drawn from a standard normal distribution. We con-
struct a design matrix A ∈ Rm×p whose entries are drawn from a
normal distribution of variance 1/m. Then, we compute linear ob-
servations y = Ax. The goal is to recover x from knowledge of y
and A, with as few observations as possible.

Figure 1 displays the estimated supports of the reconstructed sig-
nals from m = 1140 measurements. At this level of sampling, we
see that Subspace Pursuit fails to reliably recover the signal support.
Block Subspace Pursuit recovers the groups correctly, but fails to

4 5 6 7 8 9 10
Oversampling ratio m/k

0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b

ili
ty

 o
f
re

c
o
v
e

ry

SP
Block SP
FISTA-SGHT
Alg. 3

4 5 6 7 8 9 10
Oversampling ratio m/k

10
-2

10
-1

10
0

10
1

10
2

A
v
e
ra

g
e
 r

e
c
o
v
e
ry

 t
im

e

SP
Block SP
FISTA-SGHT
Alg. 3

(a) Recovery (b) Runtime

Fig. 2. Results of a Montecarlo experiment illustrating the perfor-
mance of Alg. 3. (a) Comparison of probability of recovery. (b)
Comparison of running time.

distill out the actual features of the signal. In contrast, both FISTA
with SGHT and Alg. 3 are able to accurately recover the support.

Table 2 reports some quantitative comparisons. We measure
(in decibels), the normalized estimation error (NMSE), measured
as −20 log 10

(
‖x−x̂‖2
‖x‖2

)
, as well as the (cumulative) running time

of the projection step in the different algorithms. We observe that
our proposed algorithm yields the best error performance (and com-
parable to SGHT). The key advantage is in the running time; our
algorithm achieves a 98× speedup over SGHT.

We now measure the empirical sample complexity of the dif-
ferent algorithms. For any given recovery algorithm, the empiri-
cal sample complexity represents the minimal number of observati-
nos needed to reliably recover the signal.For this experiment, we set
p = 1, 000, 000 where n = g = 1000, and leave s1 and s2 the same
as before. Similar to the above example, we generate a test signal
x of length p and parameters s1 and s2. Here, A is constructed by
randomly subsampling m rows of a p× p discrete Fourier transform
(DFT) matrix.

Figure 2 plots the results of a Monte Carlo experiment measur-
ing the performance of the different recovery algorithms — Sub-
space Pursuit, Block Subspace pursuit, FISTA-SGHT, and Alg. 3 —
for increasing values of m. Each data point in the plot was calcu-
lated by averaging over 100 independent trials. For this plot, “suc-
cess” was declared if the `2-error of the recovery estimate x̂ was
within 5% of the `2-norm of x. The intent is to measure, for each
algorithm, the transition point for the ratio m/s that demarcates the
distinction between recovery success and failure.

Figure 2(a) shows that Alg. 3 matches the success rate of FISTA
with SGHT, despite the fact that it only performs approximate bilevel
thresholding in each of its iterations. By leveraging both across- and
within-group sparsity in the feature vector x, both SGHT and Alg.
3 far outperform the methods that use only one of the two two con-
straints. In this particular setting, “conventional” sparse recovery
requires an empirical sample complexity that is about 50% worse
than either SGL or our method. From these plots, we also observe
that the block version of Subspace Pursuit yields poor recovery re-
sults. This is not surprising; this algorithm retains all features in the
selected groups, increasing the sparsity of the target by a factor g.

It has been shown in [6] that FISTA with SGHT yields supe-
rior statistical performance compared to several previous state-of-
the-art methods for bilevel regression (including [1, 3, 20]). By ex-
tension, our method can be expected to perform competitively rela-
tive to these methods. Figure 2(b) compares the projection running
time (in seconds) of the different algorithms. We see that our pro-
posed method achieves at least a 30× speedup over FISTA-SGHT.
An open question is whether ideas from our approach can be used to
speed up other methods such as [1–4].

6. REFERENCES

[1] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani, “A sparse-
group LASSO,” J. Comput. and Graphical Stat., vol. 22, no. 2,
pp. 231–245, 2013.

[2] S. Ma and J. Huang, “Penalized feature selection and classi-
fication in bioinformatics,” Briefings in bioinformatics, vol. 9,
no. 5, pp. 392–403, 2008.

[3] J. Huang, S. Ma, H. Xie, and C.-H. Zhang, “A group bridge
approach for variable selection,” Biometrika, vol. 96, no. 2, pp.
339–355, 2009.

[4] P. Breheny and J. Huang, “Penalized methods for bi-level vari-
able selection,” Statistics and its interface, vol. 2, no. 3, pp.
369, 2009.

[5] J. Huang, P. Breheny, and S. Ma, “A selective review of group
selection in high-dimensional models,” Stat. Sci., vol. 27, no.
4, 2012.

[6] S. Xiang, T. Yang, and J. Ye, “Simultaneous feature and feature
group selection through hard thresholding,” in Proc. KDD,
2014, pp. 532–541.

[7] N. Rao, C. Cox, R. Nowak, and T. Rogers, “Sparse overlapping
sets lasso for multitask learning and its application to FMRI
analysis,” in Proc. Adv. Neur. Inf. Proc. Sys., 2013, pp. 2202–
2210.

[8] N. Rao, R. Nowak, C. Cox, and T. Rogers, “Classification with
sparse overlapping groups,” arXiv preprint arXiv:1402.4512,
2014.

[9] P. Breheny, “The group exponential LASSO for bi-level vari-
able selection,” Biometrics, vol. 71, no. 3, pp. 731–740, 2015.

[10] Deanna Needell and Joel Tropp, “CoSaMP: Iterative signal re-
covery from incomplete and inaccurate samples,” Appl. Com-
put. Harmon. Anal., 2009.

[11] W. Dai and O. Milenkovic, “Subspace pursuit for compressive
sensing signal reconstruction,” IEEE Trans. Inform. Theory,
vol. 55, no. 5, pp. 2230–2249, 2009.

[12] P. Jain, A. Tewari, and P. Kar, “On iterative hard thresholding
methods for high-dimensional m-estimation,” in Proc. Adv.
Neur. Inf. Proc. Sys., 2014, pp. 685–693.

[13] R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde, “Model-
based compressive sensing,” IEEE Trans. Inform. Theory, vol.
56, no. 4, pp. 1982–2001, Apr. 2010.

[14] C. Hegde, P. Indyk, and L. Schmidt, “Approximation-tolerant
model-based compressive sensing,” in Proc. ACM Symp. Dis-
crete Alg. (SODA), Jan. 2014.

[15] C. Hegde, P. Indyk, and L. Schmidt, “A fast approximation
algorithm for tree-sparse recovery,” in Proc. IEEE Int. Symp.
Inform. Theory (ISIT), June 2014.

[16] C. Hegde, P. Indyk, and L. Schmidt, “Nearly linear-time
model-based compressive sensing,” in Proc. Intl. Colloquium
on Automata, Languages, and Programming (ICALP), July
2014.

[17] C. Hegde, P. Indyk, and L. Schmidt, “Approximation algo-
rithms for model-based compressive sensing,” IEEE Trans.
Inform. Theory, vol. 61, no. 9, pp. 5129–5147, 2015.

[18] C. Hegde, “Bilevel feature selection in nearly-linear time,”
Tech. Rep., Iowa State University, 2016.

[19] C. Hegde, P. Indyk, and L. Schmidt, “A nearly linear-time
framework for graph-structured sparsity,” in Proc. Int. Conf.
Machine Learning, July 2015.

[20] L. Yuan, Y. Wang, P. Thompson, V. Narayan, and J Ye, “Multi-
source feature learning for joint analysis of incomplete multi-
ple heterogeneous neuroimaging data,” NeuroImage, vol. 61,
no. 3, pp. 622–632, 2012.

